(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0) → s(0)
plus(x, y) → ifPlus(eq(x, 0), minus(x, s(0)), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0, x) → 0
minus(x, 0) → x
minus(x, x) → 0
eq(s(x), s(y)) → eq(x, y)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(0, 0) → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0)
timesIter(x, y, z) → ifTimes(eq(x, 0), minus(x, s(0)), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
f → g
f → h
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
inc(s(x)) →+ s(inc(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
inc(s(x)) → s(inc(x))
inc(0') → s(0')
plus(x, y) → ifPlus(eq(x, 0'), minus(x, s(0')), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0', x) → 0'
minus(x, 0') → x
minus(x, x) → 0'
eq(s(x), s(y)) → eq(x, y)
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(0', 0') → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0')
timesIter(x, y, z) → ifTimes(eq(x, 0'), minus(x, s(0')), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
f → g
f → h
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
inc(s(x)) → s(inc(x))
inc(0') → s(0')
plus(x, y) → ifPlus(eq(x, 0'), minus(x, s(0')), x, inc(x))
ifPlus(false, x, y, z) → plus(x, z)
ifPlus(true, x, y, z) → y
minus(s(x), s(y)) → minus(x, y)
minus(0', x) → 0'
minus(x, 0') → x
minus(x, x) → 0'
eq(s(x), s(y)) → eq(x, y)
eq(0', s(x)) → false
eq(s(x), 0') → false
eq(0', 0') → true
eq(x, x) → true
times(x, y) → timesIter(x, y, 0')
timesIter(x, y, z) → ifTimes(eq(x, 0'), minus(x, s(0')), y, z, plus(y, z))
ifTimes(true, x, y, z, u) → z
ifTimes(false, x, y, z, u) → timesIter(x, y, u)
f → g
f → h
Types:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
inc,
plus,
eq,
minus,
timesIterThey will be analysed ascendingly in the following order:
inc < plus
eq < plus
minus < plus
plus < timesIter
eq < timesIter
minus < timesIter
(8) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
inc, plus, eq, minus, timesIter
They will be analysed ascendingly in the following order:
inc < plus
eq < plus
minus < plus
plus < timesIter
eq < timesIter
minus < timesIter
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_s:0'4_0(
n6_0)) →
gen_s:0'4_0(
+(
1,
n6_0)), rt ∈ Ω(1 + n6
0)
Induction Base:
inc(gen_s:0'4_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_s:0'4_0(+(n6_0, 1))) →RΩ(1)
s(inc(gen_s:0'4_0(n6_0))) →IH
s(gen_s:0'4_0(+(1, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
eq, plus, minus, timesIter
They will be analysed ascendingly in the following order:
eq < plus
minus < plus
plus < timesIter
eq < timesIter
minus < timesIter
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
eq(
gen_s:0'4_0(
n239_0),
gen_s:0'4_0(
+(
1,
n239_0))) →
false, rt ∈ Ω(1 + n239
0)
Induction Base:
eq(gen_s:0'4_0(0), gen_s:0'4_0(+(1, 0))) →RΩ(1)
false
Induction Step:
eq(gen_s:0'4_0(+(n239_0, 1)), gen_s:0'4_0(+(1, +(n239_0, 1)))) →RΩ(1)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
minus, plus, timesIter
They will be analysed ascendingly in the following order:
minus < plus
plus < timesIter
minus < timesIter
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_s:0'4_0(
n780_0),
gen_s:0'4_0(
n780_0)) →
gen_s:0'4_0(
0), rt ∈ Ω(1 + n780
0)
Induction Base:
minus(gen_s:0'4_0(0), gen_s:0'4_0(0)) →RΩ(1)
0'
Induction Step:
minus(gen_s:0'4_0(+(n780_0, 1)), gen_s:0'4_0(+(n780_0, 1))) →RΩ(1)
minus(gen_s:0'4_0(n780_0), gen_s:0'4_0(n780_0)) →IH
gen_s:0'4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
minus(gen_s:0'4_0(n780_0), gen_s:0'4_0(n780_0)) → gen_s:0'4_0(0), rt ∈ Ω(1 + n7800)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
plus, timesIter
They will be analysed ascendingly in the following order:
plus < timesIter
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol plus.
(19) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
minus(gen_s:0'4_0(n780_0), gen_s:0'4_0(n780_0)) → gen_s:0'4_0(0), rt ∈ Ω(1 + n7800)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
timesIter
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol timesIter.
(21) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
minus(gen_s:0'4_0(n780_0), gen_s:0'4_0(n780_0)) → gen_s:0'4_0(0), rt ∈ Ω(1 + n7800)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
minus(gen_s:0'4_0(n780_0), gen_s:0'4_0(n780_0)) → gen_s:0'4_0(0), rt ∈ Ω(1 + n7800)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
(26) BOUNDS(n^1, INF)
(27) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
eq(gen_s:0'4_0(n239_0), gen_s:0'4_0(+(1, n239_0))) → false, rt ∈ Ω(1 + n2390)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
plus(
x,
y) →
ifPlus(
eq(
x,
0'),
minus(
x,
s(
0')),
x,
inc(
x))
ifPlus(
false,
x,
y,
z) →
plus(
x,
z)
ifPlus(
true,
x,
y,
z) →
yminus(
s(
x),
s(
y)) →
minus(
x,
y)
minus(
0',
x) →
0'minus(
x,
0') →
xminus(
x,
x) →
0'eq(
s(
x),
s(
y)) →
eq(
x,
y)
eq(
0',
s(
x)) →
falseeq(
s(
x),
0') →
falseeq(
0',
0') →
trueeq(
x,
x) →
truetimes(
x,
y) →
timesIter(
x,
y,
0')
timesIter(
x,
y,
z) →
ifTimes(
eq(
x,
0'),
minus(
x,
s(
0')),
y,
z,
plus(
y,
z))
ifTimes(
true,
x,
y,
z,
u) →
zifTimes(
false,
x,
y,
z,
u) →
timesIter(
x,
y,
u)
f →
gf →
hTypes:
inc :: s:0' → s:0'
s :: s:0' → s:0'
0' :: s:0'
plus :: s:0' → s:0' → s:0'
ifPlus :: false:true → s:0' → s:0' → s:0' → s:0'
eq :: s:0' → s:0' → false:true
minus :: s:0' → s:0' → s:0'
false :: false:true
true :: false:true
times :: s:0' → s:0' → s:0'
timesIter :: s:0' → s:0' → s:0' → s:0'
ifTimes :: false:true → s:0' → s:0' → s:0' → s:0' → s:0'
f :: g:h
g :: g:h
h :: g:h
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
hole_g:h3_0 :: g:h
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
inc(gen_s:0'4_0(n6_0)) → gen_s:0'4_0(+(1, n6_0)), rt ∈ Ω(1 + n60)
(32) BOUNDS(n^1, INF)